Exact Solution for a Nonlinear Equation

Bin Zheng
School of Mathematics and Statistics, Shandong University of Technology, Zibo, China, 255049
Corresponding Author: Bin Zheng

Submitted: 10-10-2021
Revised: 19-10-2021
Accepted: 22-10-2021

Abstract

In this paper, we derive exact traveling wave solutions ofnonlinear D-S conduction equation by a presented method.The method appears to be efficient in seeking exact solutionsof nonlinear equations. KEYWORDS:(G'/G)-expansion method, traveling wave solutions, exact solution, evolution equation, nonlinear D-S equation.

I. INTRODUCTION

In scientific research, seeking the exact solutions of nonlinearequations is a hot topic. Many approaches have beenpresented so far [1-6]. In [7], Mingliang Wang propo-seda new method called ($\mathrm{G}^{\prime} / \mathrm{G}$)expansion method. The mainmerits of the ($\mathrm{G}^{\prime} / \mathrm{G}$)expansion method over the other methodsare that it gives more general solutions with some freeparameters and it handles NLEEs in a direct manner withno requirement for initial/boundary condition or initial trialfunction at the outset. So the application of the $\left(\mathrm{G}^{\prime} / \mathrm{G}\right)$-expansion method attracts many author's attention.Our aim in this paper is to present an application ofthe ($\mathrm{G}^{\prime} / \mathrm{G}$)-exp-ansion method to nonlinear D-S equation.

II. DESCRIPTION OF THE(G ${ }^{\mathbf{}} / \mathbf{G}$)EXPANSION METHOD

In this section we will describe the (G'/G)-expansion methodfor finding out the traveling wave solutions of no-nlinear evolution equations.

Suppose that a nonlinear equation, say in three indep-endentvariables x , y and t , is given by
$P\left(u, u_{t}, u_{x}, u_{y}, u_{t t}, u_{x t}, u_{y t}, u_{x x}, u_{y y}, \ldots ..\right)=0$
(2.1)
where $u=u(x, y, t)$ is an unknown function, P isa polyno-mial in $u=u(x, y, t)$ and its various partialderivatives, in which the highest order derivatives andnonlinear terms are involved. In the following we give themain steps of the ($\mathrm{G}^{\prime} / \mathrm{G}$)expansion method.
Step 1. Combining the independent variables x, y and t
into one variable $\xi=\xi(x, y, t)$, we suppose that
$u(x, y, t)=u(\xi), \xi=\xi(x, y, t)$
(2.2)
the travelling wave variable (2.2) permits us reducing Eq.
(2.1) to an ODE for $u=u(\xi)$
$P\left(u, u^{\prime}, u^{\prime \prime}, \ldots \ldots ..\right)=0$
Step 2. Suppose that the solution of (2.3) can be expre-ssedby a polynomial in $\left(\mathrm{G}^{\prime} / \mathrm{G}\right)$ as follows:
$u(\xi)=\alpha_{m}\left(\frac{G^{\prime}}{G}\right)^{m}+\ldots \ldots$.
where $G=G(\xi)$ satisfies the second order LODE in theform
$G^{\prime \prime}+\lambda G^{\prime}+\mu G=0$
$\alpha_{m}, \ldots \lambda$ and μ are constants to be determined later, $\alpha_{m} \neq 0$.The unwritten part in (2.4) is also a polynomial in ${ }^{\left(\frac{G^{\prime}}{G}\right)}$, the degree of which is generally equal to or less than $m-1$.The positive integer m can be determined by consider-ing thehomogeneous balance between the highest order de-rivativesand nonlinear terms appearing in (2.3).
Step 3. Substituting (2.4) into (2.3) and using second
order LODE (2.5), collecting all terms with the sameorder of $\left(\frac{G^{\prime}}{G}\right)$ together, the left-hand side of Eq. (2.3)is converted into another polynomial in $\left(\frac{G^{\prime}}{G}\right)$

Equatingeach coefficient of this polynomial to zero, yields a set ofalgebraic equation-ns for $\alpha_{m}, \ldots \lambda$ and μ.
Step 4. Assuming that the constants $\alpha_{m}, \ldots . \lambda$ and μ canbe obtained by solving the algebraic equations in Step 3,since the general solutions of the second order LODE (2.5)
have been well known for us, substituting α_{m}, \ldots and thegeneral solutions of Eq. (2.5) into (2.4) we can obtain thetraveling wave solutions of the nonlinear evolution equation(2.1).

In the subsequent sections we will illustrate the propo-sedmethod in detail by applying it to a nonlinear evolutionequation.

III. APPLICATION OF (G'/G)EXPANSION METHOD FORNONLINEAR D-S EQUATION

In this section, we will consider the following nonline-ar D-S equation:
$u_{t}+\left(v^{2}\right)_{x}=0$
$v_{t}-v_{x x x}+3 v u_{x}+3 u v_{x}=0$

Supposing that
$\xi=k x-\omega t$
By (3.3), (3.1) and (3.2) are converted into ODEs
$-\omega u^{\prime}+k\left(v^{2}\right)^{\prime}=0$
$-\omega v^{\prime}-k^{3} v^{\prime \prime \prime}+3 k v u^{\prime}+3 k u v^{\prime}=0$
Integrating (3.4) and (3.5) once, we have
$-\omega u+k v^{2}=g_{1}$
$-\omega v-k^{3} v^{\prime \prime}+3 k u v=g_{2}$
Suppose that the solution of (3.6) and (3.7) can be expressed by apolynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows:
$u(\xi)=\sum_{i=0}^{m} a_{i}\left(\frac{G^{\prime}}{G}\right)^{i}$
$v(\xi)=\sum_{i=0}^{n} b_{i}\left(\frac{G^{\prime}}{G}\right)^{i}$
where $a_{i}, \quad b_{i}$ are constants, $G=G(\xi)$ satisfies the second orderLODE in the form:
$G^{\prime \prime}+\lambda G^{\prime}+\mu G=0$
where λ and μ are constants.
Balancing the order of u and v^{2} in Eq.(3.6),the order of $v^{\prime \prime}$ and $u v$ in Eq.(3.7), we can obtain $m=2 n, m+2=m+n \Rightarrow m=2, n=1$
So Eq.(3.8) and (3.9) can berewritten as
$u(\xi)=a_{2}\left(\frac{G^{\prime}}{G}\right)^{2}+a_{1}\left(\frac{G^{\prime}}{G}\right)^{1}+a_{0}, a_{2} \neq 0$
(3.11)
$v(\xi)=b_{1}\left(\frac{G^{\prime}}{G}\right)^{1}+b_{0}, b_{1} \neq 0$
(3.12)
$a_{2}, a_{1}, a_{0}, b_{1}, b_{0}$ are constants to be determined later.
Substituting (3.11) and (3.12) into (3.6) and (3.7) and collecting all the termswith the same power of (${ }^{\prime}$) toge-ther and equating eachcoefficient to zero, yields a set of simultaneous algebraicequations as follows:
For Eq.(3.6):
$\left(\frac{G^{\prime}}{G}\right)^{0}:-\omega a_{0}-g_{1}+k b_{0}{ }^{2}=0$
$\left(\frac{G^{\prime}}{G}\right)^{1}:-\omega a_{1}+2 k b_{1} b_{0}=0$
$\left(\frac{G^{\prime}}{G}\right)^{2}: k b_{1}^{2}-\omega a_{2}=0$
For Eq.(3.7):
$\left(\frac{G^{\prime}}{G}\right)^{0}:-\omega b_{0}-g_{2}-k^{3} b_{1} \lambda \mu+3 k a_{0} b_{0}=0$
$\left(\frac{G^{\prime}}{G}\right)^{1}:-k^{3} b_{1} \lambda^{2}+3 k a_{0} b_{1}-\omega b_{1}-2 k^{3} b_{1} \mu+3 k b_{0} a_{1}=0$
$\left(\frac{G^{\prime}}{G}\right)^{2}: 3 k a_{1} b_{1}-3 k^{3} b_{1} \lambda+3 k b_{0} a_{2}=0$
$\left(\frac{G^{\prime}}{G}\right)^{3}:-2 k^{3} b_{1}+3 k b_{1} a_{2}=0$
Solving the algebraic equations above, yields:
$a_{2}=\frac{2}{3} k^{2}, a_{1}=\frac{2}{3} k^{2} \lambda$,
$a_{0}=\frac{1}{6} \frac{3 b_{1}{ }^{2}+4 k^{4} \mu}{k^{2}}, b_{1}=b_{1}, b_{0}=\frac{1}{2} b_{1} \lambda$
$k=k, \omega=\frac{3 b_{1}^{2}}{2 k}, g_{1}=\frac{b_{1}^{2}\left(-3 b_{1}{ }^{2}-4 k^{4} \mu+k^{4} \lambda\right)}{4 k^{3}}, g_{2}=0$

Where ${ }^{b_{1}, k}$ are arbitrary constants.
Substituting (3.13) into (3.11) and (3.12), yields:
$u(\xi)=\frac{2}{3} k^{2}\left(\frac{G^{\prime}}{G}\right)^{2}+\frac{2}{3} k^{2} \lambda\left(\frac{G^{\prime}}{G}\right)^{1}+\frac{1}{6} \frac{3 b_{1}^{2}+4 k^{4} \mu}{k^{2}}$
(3.14)
$v(\xi)=b_{1}\left(\frac{G^{\prime}}{G}\right)^{1}+\frac{1}{2} b_{1} \lambda$
(3.15)
where $\xi=k x-\frac{3 b_{1}^{2}}{2 k} t$.
Substituting the general solutions of (3.10) into (3.14) and (3.15), we have:

When $\lambda^{2}-4 \mu>0$
$u_{1}(\xi)=-\frac{k^{2} \lambda^{2}}{6}+\frac{k^{2}}{6}\left(\lambda^{2}-4 \mu\right)$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}\right)^{2}$

International Journal of Advances in Engineering and Management (IJAEM) Volume 3, Issue 10 Oct 2021, pp: 936-938 www.ijaem.net ISSN: 2395-5252

$+\frac{1}{6} \frac{3 b_{1}^{2}+4 k^{4} \mu}{k^{2}}$
$v_{1}(\xi)=-\frac{1}{2} b_{1} \lambda+\frac{b_{1} \sqrt{\lambda^{2}-4 \mu}}{2}$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}\right)^{2}$
$+\frac{1}{2} b_{1} \lambda$
where $\xi=k x-\frac{3 b_{1}^{2}}{2 k} t, b_{1}, k$ are arbitrary constants.
When $\lambda^{2}-4 \mu<0$
$u_{2}(\xi)=-\frac{k^{2} \lambda^{2}}{6}+\frac{k^{2}}{6}\left(4 \mu-\lambda^{2}\right)$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}\right)^{2}$
$+\frac{1}{6} \frac{3 b_{1}^{2}+4 k^{4} \mu}{k^{2}}$
$v_{2}(\xi)=-\frac{1}{2} b_{1} \lambda+\frac{b_{1} \sqrt{4 \mu-\lambda^{2}}}{2}$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}\right)^{2}$
$+\frac{1}{2} b_{1} \lambda$
where $\begin{gathered}\xi=k x-\frac{3 b_{1}^{2}}{2 k} t, b_{1}, k \text { are arbitrary constants. }\end{gathered}$
When $\lambda^{2}-4 \mu=0$
$u_{3}(\xi)=-\frac{k^{2} \lambda^{2}}{6}+\frac{k^{2} C_{2}^{2}}{3\left(C_{1}+C_{2} \xi\right)^{2}}+\frac{1}{6} \frac{3 b_{1}^{2}+4 k^{4} \mu}{k^{2}}$
$v_{3}(\xi)=\frac{b_{1}\left(2 C_{2}-C_{1} \lambda-C_{2} \lambda \xi\right)}{2\left(C_{1}+C_{2} \xi\right)}+\frac{1}{2} b_{1} \lambda$
where $\xi=k x-\frac{3 b_{1}^{2}}{2 k} t, b_{1}, k$ are arbitrary constants

IV. CONCLUSION

The main points of the ($\mathrm{G}^{\prime} / \mathrm{G}$)-expansion method are thatassuming the solution of the ODE reduced by using thetraveling wave variable as well as integrating can be expre-ssedby an m -th degree polynomial in ($\mathrm{G}^{\prime} / \mathrm{G}$), where $G=G(\xi)$ is the general solutions of a second order LODE.The positive integer m is determined by the homogeneousbalance between the highest order derivatives and nonlinearterms appearing in the
reduced ODE, and the coefficientsof the polynomial can be obtained by solving a set ofsimu-ltaneous algebraic equations resulted from the processof using the method. Furthermore the method can also beused to many other nonlinear equations.

REFERENCES

[1]. M. Wang, Solitary wave solutions for variant Boussinesqequations, Phys. Lett. A 199 (1995) 169-172.
[2]. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitarywave solutions for nonlinear Hirota-Satsuma coupled KdVequations, Chaos, Solitons and Fractals 22 (2004) 285303.
[3]. L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDEnonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 278 (2001) 267-270.
[4]. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysisand modified tanh-function to find the invariant solutions andsoliton solution for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221234.
[5]. M. Inc, D.J. Evans, On traveling wave solutions of somenonlinear evolution equations, Int. J. Comput. Math. 81 (2004)191-202.
[6]. M.A. Abdou, The extended tanh-method and its applicationsfor solving nonlinear physical models, Appl. Math. Comput. 190 (2007) 988-996.
[7]. Mingliang Wang, Xiangzheng Li, Jinliang Zhang, The ($\mathrm{G}^{\prime} / \mathrm{G}$)-expansion method and travelling wave solutions of nonlinearevolution equations in mathematical physics. Physics LettersA, 372 (2008) 417-423.

