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ABSTRACT: In this paper, we derive exact 

traveling wave solutions ofnonlinear D-S 

conduction equation by a presented method.The 

method appears to be efficient in seeking exact 

solutionsof nonlinear equations. 

KEYWORDS:(G’/G)-expansion method, traveling 

wave solutions,exact solution, evolution equation, 

nonlinear D-S equation. 

 

I. INTRODUCTION 
In scientific research, seeking the exact solutions of 

nonlinearequations is a hot topic. Many approaches 

have beenpresented so far [1-6]. In [7], Mingliang 

Wang propo-seda new method called  (G’/G)-

expansion method. The mainmerits of the (G’/G)-

expansion method over the other methodsare that it 

gives more general solutions with some 

freeparameters and it handles NLEEs in a direct 

manner withno requirement for initial/boundary 

condition or initial trialfunction at the outset. So the 

application of the  (G’/G)-expansion method 

attracts many author’s attention.Our aim in this 

paper is to present an application ofthe  (G’/G)-

exp-ansion method to nonlinear D-S equation. 

 

II. DESCRIPTION OF THE(G’/G )-

EXPANSION METHOD 
In this section we will describe the 

(G’/G)-expansion methodfor finding out the 

traveling wave solutions of no-nlinear evolution 

equations. 

Suppose that a nonlinear equation, say in three 

indep-endentvariables x, y and t , is given by 

,( , , , , , , , ......) 0t x y tt xt yt xx yyP u u u u u u u u u 
  

(2.1) 

where u = u(x, y, t) is an unknown function,P isa 

polyno-mial in u = u(x, y, t) and its various 

partialderivatives, in which the highest order 

derivatives andnonlinear terms are involved. In the 

following we give themain steps of the (G’/G )-

expansion method. 

Step 1. Combining the independent variables x, y 

and t 

into one variable
( , , )x y t 

, we suppose that 

( , , ) ( ), ( , , )u x y t u x y t   
                     

(2.2) 

the travelling wave variable (2.2) permits us 

reducing Eq. 

(2.1) to an ODE for
( )u u 

 

( , ', '',......) 0P u u u 
                         (2.3) 

Step 2. Suppose that the solution of (2.3) can be 

expre-ssedby a polynomial in (G’/G ) as follows: 
'( ) ( ) ......mG

m G
u   

                       (2.4) 

where 
( )G G 

 satisfies the second order 

LODE in theform 

'' ' 0G G G   
                      (2.5) 

,...m 
 and


are constants to be determined 

later,
0m 

.The unwritten part in (2.4) is also a 

polynomial in
'( )G

G , the degree of which is 

generally equal to or less than m−1.The positive 

integer m can be determined by consider-ing 

thehomogeneous balance between the highest order 

de-rivativesand nonlinear terms appearing in (2.3). 

Step 3. Substituting (2.4) into (2.3) and using 

second 

order LODE (2.5), collecting all terms with the 

sameorder of 
'( )G

G  together, the left-hand side of 

Eq. (2.3)is converted into another polynomial in 
'( )G

G . Equatingeach coefficient of this polynomial 

to zero, yields a set ofalgebraic equation-ns for

,...m 
 and


. 

Step 4. Assuming that the constants
,...m 

 and


canbe obtained by solving the algebraic 

equations in Step 3,since the general solutions of 

the second order LODE (2.5) 
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have been well known for us, substituting
,...m

and thegeneral solutions of Eq. (2.5) into (2.4) we 

can obtain thetraveling wave solutions of the 

nonlinear evolution equation(2.1). 

In the subsequent sections we will illustrate 

the propo-sedmethod in detail by applying it to a 

nonlinear evolutionequation. 

 

III. APPLICATION OF (G’/G )-

EXPANSION METHOD 

FORNONLINEAR D-S EQUATION 

In this section, we will consider the following 

nonline-ar D-S equation: 
2( ) 0t xu v 

                                              (3.1) 

3 3 0t xxx x xv v vu uv   
                       (3.2) 

 

Supposing that 

kx t  
                               (3.3) 

By (3.3), (3.1) and (3.2) are converted into ODEs 
2' ( ) ' 0u k v  

                                (3.4) 
3' ''' 3 ' 3 ' 0v k v kvu kuv            (3.5) 

Integrating (3.4) and (3.5) once, we have 
2

1u kv g  
                                    (3.6) 

3

2'' 3v k v kuv g   
                     (3.7) 

Suppose that the solution of (3.6) and (3.7) can be 

expressed by apolynomial in 
'( )G

G  as follows: 

'

0

( ) ( )
m

iG
i G

i

u a



                              (3.8) 

'

0

( ) ( )
n

iG
i G

i

v b



                               (3.9) 

where ia
, ib

are constants, 
( )G G 

 satisfies 

the second orderLODE in the form: 

'' ' 0G G G   
                                (3.10) 

where   and 


 are constants. 

Balancing the order of u  and 
2v  in Eq.(3.6),the 

order of ''v  and uv  in Eq.(3.7), we can obtain 

2 , 2 2, 1m n m m n m n      
. 

So Eq.(3.8)  and (3.9) can berewritten as 
2 1' '

2 1 0 2( ) ( ) ( ) , 0G G
G G

u a a a a    
        

(3.11) 
1'

1 0 1( ) ( ) , 0G
G

v b b b   
                           

(3.12) 

2 1 0 1 0, , , ,a a a b b
are constants to be determined 

later. 

Substituting (3.11) and (3.12 ) into (3.6) and (3.7) 

and collecting all the termswith the same power of 
'( )G

G  toge-ther and equating eachcoefficient to 

zero, yields a set of simultaneous 

algebraicequations as follows: 

For Eq.(3.6): 

0 2

0 1 0

'
( ) : 0
G

a g kb
G

   
 

1

1 1 0

'
( ) : 2 0
G

a kb b
G

  
 

2 2

1 2

'
( ) : 0
G

kb a
G

 
 

For Eq.(3.7): 

0 3

0 2 1 0 0

'
( ) : 3 0
G

b g k b ka b
G

     
 

1 3 2 3

1 0 1 1 1 0 1

'
( ) : 3 2 3 0
G

k b ka b b k b kb a
G

       
 

2 3

1 1 1 0 2

'
( ) :3 3 3 0
G

ka b k b kb a
G

  
 

3 3

1 1 2

'
( ) : 2 3 0
G

k b kb a
G

  
 

Solving the algebraic equations above, yields: 

2 2

2 1

2 2
, ,

3 3
a k a k  

 
2 4

1
0 1 1 0 12

3 41 1
, ,

6 2

b k
a b b b b

k





  

 
2 2 2 4 4

1 1 1
1 23

3 ( 3 4 )
, , , 0

2 4

b b b k k
k k g g

k k

 


  
   

 
                                                                        (3.13) 

Where 1,b k
 are arbitrary constants. 

Substituting (3.13) into (3.11) and (3.12), yields: 
2 4

2 2 2 1 1' '

2

3 42 2 1
( ) ( ) ( )

3 3 6
G G
G G

b k
u k k

k


 


  

     
(3.14) 

1'
1 1

1
( ) ( )

2
G
G

v b b  
                                          

(3.15) 

where 

2

13

2

b
kx t

k
  

. 

Substituting the general solutions of (3.10) into 

(3.14) and(3.15), we have: 

When
2 4 0    

2 2 2
2

1( ) ( 4 ).
6 6

k k
u


     

2 2

1 2
2

2 2

1 2

1 1
sinh 4 cosh 4

2 2( )
1 1

cosh 4 sinh 4
2 2

C C

C C

   

   

  

  
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2 4

1

2

3 41

6

b k

k




 
2

1
1 1

41
( ) .

2 2

b
v b

 
 


  

 

2 2

1 2
2

2 2

1 2

1 1
sinh 4 cosh 4

2 2( )
1 1

cosh 4 sinh 4
2 2

C C

C C

   

   

  

  
 

1

1

2
b 

 

where 

2

13

2

b
kx t

k
  

, 1,b k
 are arbitrary constants. 

When
2 4 0    

2 2 2
2

2 ( ) (4 ).
6 6

k k
u


     

2 2

1 2
2

2 2

1 2

1 1
sinh 4 cosh 4

2 2( )
1 1

cosh 4 sinh 4
2 2

C C

C C

     

     

  

  
 

2 4

1

2

3 41

6

b k

k




 
2

1
2 1

41
( ) .

2 2

b
v b

 
 


  

 

2 2

1 2
2

2 2

1 2

1 1
sinh 4 cosh 4

2 2( )
1 1

cosh 4 sinh 4
2 2

C C

C C

     

     

  

  
 

1

1

2
b 

 

where 

2

13

2

b
kx t

k
  

, 1,b k
 are arbitrary constants. 

When
2 4 0    

2 2 2 42 2

2 1
3 2 2

1 2

3 41
( )

6 3( ) 6

k C b kk
u

C C k







   

  

1 2 1 2
3 1

1 2

(2 ) 1
( )

2( ) 2

b C C C
v b

C C

 
 



 
 


 

where 

2

13

2

b
kx t

k
  

, 1,b k
 are arbitrary constants. 

 

IV. CONCLUSION 
The main points of the (G’/G )-expansion 

method are thatassuming the solution of the ODE 

reduced by using thetraveling wave variable as well 

as integrating can be expre-ssedby an m-th degree 

polynomial in (G’/G ), where ( )G G  is the 

general solutions of a second order LODE.The 

positive integer m is determined by the 

homogeneousbalance between the highest order 

derivatives and nonlinearterms appearing in the 

reduced ODE, and the coefficientsof the 

polynomial can be obtained by solving a set 

ofsimu-ltaneous algebraic equations resulted from 

the processof using the method. Furthermore the 

method can also beused to many other nonlinear 

equations. 
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